Understanding NVIS

Paul Denisowski (KO4LZ), Product Management Engineer **ROHDE&SCHWARZ**

Make ideas real

About the presenter

- Paul Denisowski, KO4LZ (ham for > 30 years)
 - Active on HF and VHF/UHF (weak signal)
 - Almost exclusively using indoor antennas
- ► MA from UNC-CH (1992), MSEE from NCSU (1996)
- Product Management Engineer at Rohde & Schwarz
 - Spectrum analyzers, network analyzers, oscilloscopes, direction finding, interference hunting, etc. etc.
 - Also cover propagation-related topics
 - Primarily for mil / gov customers
 - Hold a patent for a NVIS DF methodology
 - US11550021B2

Decline of mil / gov interest in HF

- ► Satellites began to replace HF in the late 1960s
 - Much higher data rates
 - Relatively immune from variable propagation
 - Did not require trained operators
- Internet changed expectations on connectivity
 - Higher data rates / instant communications
 - Always available
 - Globally available
- Decline in HF use / funding / mindshare led to a decrease in development and knowledge of HF

Satellite vulnerabilities / weaknesses

- Anti-satellite (ASAT) technologies include:
 - Ground-based (e.g. lasers)
 - Air- or space-based "kill vehicles"
- Susceptible to jamming
 - Satellites not frequency-agile
- Solar storms or space weather
 - Flares and CMEs can disrupt / damage satellites
- ► Lack of polar coverage
 - Not all constellations cover the poles
- ► Terrain can block signals
 - Mountains, jungles, etc.

Renewed mil / gov interest in HF

- Global connectivity is mission-critical
 - Backup / redundancy is required
- Advantages of HF
 - Global coverage
 - Requires no "infrastructure"
 - Much, much cheaper than satellite
 - Robust against attacks
 - Robust against jamming
- Strong renewed mil / gov interest in HF over the last decade
 - Solutions from many providers

Review of HF skywave propagation

- ► Enables beyond line of sight (BLOS) and worldwide communications
- ► Signals are refracted by layers of ionized particles in the atmosphere (ionosphere)
 - The D-layer absorbs signals (helps determine minimum frequency)
 - The F-layer refracts signals (helps determine maximum frequency)

Skip zone

- The incident angle affects the range achievable using skywave propagation
 - Angle depends on antenna type and installation
- Lower incident angles yield greater distances
- In a "skip zone" signals cannot be received via skywave or groundwave

Near vertical incidence skywave (NVIS)

- Special case of skywave that enables
 - Skip zone coverage
 - Coverage in rough terrain
- Implemented using antennas with very high (> 75°) radiation angles and low HF frequencies
- Typical coverage range is several hundred kilometers
- Common applications include:
 - Military
 - Disaster relief
 - Amateur radio

Advantages of NVIS - technical

- Resistant to fading / more constant received signal level
 - Shorter path through D-layer
 - Shorter overall path length
 - Terrain does not attenuate signal
 - Fading due to multipath reduced
- ► Works well with low power
 - Important for portable operation
- Omnidirectional coverage
 - Does not require knowledge of receiver location
 - Antenna orientation is unimportant
 - Flexibility in setup and siting

Advantages of NVIS – operational (for mil / gov applications)

- Lower probability of intercept
 - Low power
 - Vertical radiation pattern
- Difficult (but not impossible) to DF
 - Vertical pattern
 - Energy returns with roughly equal strength
 - No strong groundwave to locate
- Difficult to jam via groundwave
- Antennas are low / discrete
 - Can be easily erected, often by one person
 - Does not require controlling the "high ground"

Disadvantages of NVIS

- Only works at lower frequencies
- Limited range (hundred of km vs. thousands of km)
- Both stations need NVIS antennas for good results
- ▶ Both atmospheric and man-made noise tends to be higher at the lower frequencies used for NVIS

Frequencies

- ► NVIS frequencies must be:
 - low enough to be refracted by the F layer
 - high enough to not be excessively attenuated by the D layer
- NVIS frequencies usually between 2 and 10 MHz
 - Depends on ionization (solar cycle, time of day, season, etc.)
 - Depends on antenna
 - 4 to 8 MHz during the day
 - 2 to 4 MHz at night
- May be manually chosen by the operator or automatically using ALE

About NVIS antennas

- NVIS is essentially an "antenna" technology
- Most HF skywave antennas are designed for a low radiation angle
 - Longer skywave distances
- NVIS antennas are designed for a high radiation angle (> 75°)
 - Usually implemented using antennas that are low to the ground
- An antenna tuning unit (ATU) may be needed

Elevation (vertical) pattern

"Standard" Dipole

Lower take-off angle works well for long-distance skywave

"NVIS" Dipole

High take-off angle works well for NVIS (but poorly for long-distance skywave)

Azimuth (horizontal) pattern

Common NVIS antenna types

- Many antenna types can be used / adapted for NVIS
- Portability / ease of setup ("field expedient") often determines specific form factor
- Most common NVIS types:
 - Dipole
 - Inverted Vee
 - Unbalanced wire
 - Vehicle-mounted
- ► Others (usually fixed site):
 - Conical spiral
 - Vertical log periodic

NVIS antenna example - dipole

• Low-angle skywave usually ~ 0.5 λ above ground

- NVIS dipoles usually ~ 0.2 λ above ground
 - Ex: ~ 8 meters at 7 MHz (40 meters)
 - Radiation angle increases as active element is lowered
- Optimum antenna height is also partly a function of the ground conductivity
 - Higher conductivity = lower optimal height
- Reflector element can be used in cases of low soil conductivity (sand, rock) or if dipole is high above the ground.

λ/2

NVIS antenna example – inverted Vee

- Dipole supported by a center mast
- Pair of dipoles ("turnstile") often used
 - Reduces polarization sensitivity
- ► Easy to erect: only one support
 - Can be raised by one person
- Mast only slightly higher than dipole
 - Apex angle should be kept low

NVIS antenna example – unbalanced wire

- An inverted L is an example of an unbalanced antenna used in NVIS
 - Horizontal flattop
 - Vertical downlead
- Works against ground (or counterpoise if necessary)
- Antenna radiates along entire length if connection is made at the end of the wire
- Also can be mounted on vehicles

Mobile NVIS antennas

- ► Loop antennas popular because they can used in motion
- Standard vertical whip antennas can be bent/tied into horizontal position for use in NVIS
 - Best performance when tied backwards
 - Can be tied forward for use in motion (less efficient)

Additional mobile NVIS antennas

Skywave vs. groundwave

- In addition to maximizing high-angle skywave signals, a NVIS antenna should also minimize low-angle groundwave signals
 - Distortion / fading may occur if a station receives a signal via skywave and groundwave
- Additional advantages of minimizing groundwave:
 - Reduces the impact of noise sources
 - Reduces effectiveness of groundwave-based jamming
 - Makes traditional ground-based radiolocation (direction finding) more difficult
 - But NVIS emitters can still be accurately DF'ed using multiple DF stations and elevation angle

Summary

- NVIS uses very high (> 75°) elevation angles to refract signals back from the ionosphere
- ► Main characteristics:
 - Coverage of "skip zones"
 - Coverage in terrain-challenged areas
 - Omnidirectional coverage
 - Lower POI, harder to DF, greater jamming immunity
 - Uses low HF frequencies (~ 2 to 10 MHz)
- Common NVIS antennas
 - Dipoles (mounted low) / inverted Vee
 - Unbalanced antennas (inverted L)
 - Loop-style antennas

